Nanomateriales: métodos de síntesis

Johnny Marlon Borja-Borja, Byron Stalin Rojas-Oviedo

Resumen


La nanotecnología es una ciencia nueva, que ha venido tomando auge durante las últimas décadas, la cual se basa en el estudio, síntesis, caracterización y aplicación de materiales nano particulados con propiedades bien definidas. Los métodos de síntesis son muy variados y van a depender de la plantilla inicial, de las propiedades que se requiere que posea el nanomaterial y las aplicaciones para los cuales está destinado. En este trabajo investigativo de revisión bibliográfica abordaremos temas referentes a los diferentes y más comunes métodos de síntesis aplicados para la obtención de nanomateriales, las condiciones operativas a las cuales debemos trabajar y algunas recomendaciones que se debe tener en consideración para obtener nanopartículas con una elevada cristalización y pureza.


Palabras clave


Nanomateriales; nanopartículas; plantilla; síntesis.

Texto completo:

PDF HTML XML

Referencias


Gómez-Garzón M. Nanomateriales, Nanopartículas y Síntesis verde. Rev Repert Med y Cirugía. 2018;27(2):75–80.

Alonso-Núñez G. Nanoquímica: Ingeniería de Nanomateriales. Mundo Nano Rev Interdiscip en Nanociencias y Nanotecnología. 2015;1(1):45–50.

Zanella R. ARTÍCULOS * Agradecimientos: a los proyectos PAPIIT IN103513 y Conacyt 130407 por el apoyo finan- ciero otorgado Aplicación de los nanomateriales en catálisis*. Mundo Nano. 2014;7(12):66–82.

García Martínez J, Abellán G, Carrillo AI, Linares N. Nanomateriales para aplicaciones avanzadas. Actas 2006-2007. 2007;1–10.

Han W, Jia Y, Xiong G, Yang W. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol-gel method. Sci Technol Adv Mater. 2007;8(1–2):101–5.

Sathupunya M, Gulari E, Wongkasemjit S. Na-A (LTA) zeolite synthesis directly from alumatrane and silatrane by sol-gel microwave techniques. J Eur Ceram Soc. 2003;23(8):1293–303.

24.pdf.

Kulprathipanja S. Chemistry of Zeolites and Related Porous Materials Molecular Heterogeneous Catalysis Concepts of Modern Catalysis and Kinetics Handbook of Porous Solids Catalysts for Fine Chemical Synthesis. 2010. 6 p.

Cundy CS, Cox PA. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 2005;82(1–2):1–78.

Químicas FDECC, Básicas CDEZ. Departamento de Ingeniería Química. 2001.

Colella C. L a s i ntes i delle zeoli ti. 1937(2).

Zaarour M, Dong B, Naydenova I, Retoux R, Mintova S. Progress in zeolite synthesis promotes advanced applications. Microporous Mesoporous Mater [Internet]. 2014;189:11–21. Available from: http://dx.doi.org/10.1016/j.micromeso.2013.08.014

Xia Y, Mokaya R, Grant DM, Walker GS. A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties. Carbon N Y [Internet]. 2011;49(3):844–53. Available from: http://dx.doi.org/10.1016/j.carbon.2010.10.028

Amblard M, Fehrentz JA, Martinez J, Subra G. Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol. 2006;33(3):239–54.

37.pdf.

Beach S, Phase S, Synthesis P, Ameri J. United States Patent (19). 1986;(19).

Aomine S, Yoshinaga N. Clay minerals of some well-drained volcanic ash soils in Japan. Soil Sci. 1955;79(5):349–58.

Feng S, Xu R. New materials in hydrothermal synthesis. Acc Chem Res. 2001;34(3):239–47.

Komarneni S, Cristina D’arrigo M, Leonelli C, Pellacani GC, Katsuki H. Microwave-Hydrothermal Synthesis of Nanophase Ferrites This paper reports the synthesis of technologically impor-tant ferrites such as ZnFe 2 O 4 , NiFe 2 O 4 , MnFe 2 O 4 , and CoFe 2 O 4 by using novel microwave-hydrothermal process-ing. Nanophase ferri. 1998;43:3041–3.

Rebrov E V. Sol-gel synthesis of zeolite coatings and their application in catalytic microstructured reactors. Catal Ind. 2009;1(4):322–47.

Majhi S, Mohanty P, Wang H, Pant KK. Direct conversion of natural gas to higher hydrocarbons: A review. J Energy Chem [Internet]. 2013;22(4):543–54. Available from: http://dx.doi.org/10.1016/S2095-4956(13)60071-6

Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, et al. Toward N-doped graphene via solvothermal synthesis. Chem Mater. 2011;23(5):1188–93.

Ghosh M, Rao CNR. Solvothermal synthesis of CdO and CuO nanocrystals. Chem Phys Lett. 2004;393(4–6):493–7.

Lu F, Cai W, Zhang Y. ZnO hierarchical micro/nanoarchitectures: Solvothermal synthesis and structurally enhanced photocatalytic performance. Adv Funct Mater. 2008;18(7):1047–56.

Kim CS, Moon BK, Park JH, Choi BC, Seo HJ. Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant. J Cryst Growth. 2003;257(3–4):309–15.

Falcomer D, Daldosso M, Cannas C, Musinu A, Lasio B, Enzo S, et al. A one-step solvothermal route for the synthesis of nanocrystalline anatase TiO2 doped with lanthanide ions. J Solid State Chem. 2006;179(8):2452–7.

Wahi RK, Liu Y, Falkner JC, Colvin VL. Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area. J Colloid Interface Sci. 2006;302(2):530–6.

Tian Y, Yu B, Li X, Li K. Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. J Mater Chem. 2011;21(8):2476–81.

Deng Y, Ma Z, Wang K, Chen J. Clean synthesis of adipic acid: By direct oxidation of cyclohexene with H2O2 over peroxytungstate-organic complex catalysts. Green Chem. 1999;1(6):275–6.

Gorte RJ, Vohs JM. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. J Catal. 2003;216(1–2):477–86.

Keller N, Pham-Huu C, Crouzet C, Ledoux MJ, Savin-Poncet S, Nougayrede JB, et al. Direct oxidation of H2S into S. New catalysts and processes based on SiC support. Catal Today. 1999;53(4):535–42.

Hickman DA, Haupfear EA, Schmidt LD. Synthesis gas formation by direct oxidation of methane over Rh monoliths. Catal Letters. 1993;17(3–4):223–37.

Craciun R. (12) United States Patent. 2004;2(12):165–72.

Shi H, Shen Y, He F, Li Y, Liu A, Liu S, et al. Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction. J Mater Chem A. 2014;2(38):15704–16.

Tapia JI, Larios E, Bittencourt C, Yacamán MJ, Quintana M. Carbon nano-allotropes produced by ultrasonication of few-layer graphene and fullerene. Carbon N Y. 2016;99:541–6.

Kyotani T, Ma Z, Tomita A. Template synthesis of novel porous carbons using various types of zeolites. Carbon N Y. 2003;41(7):1451–9.

Jones AC, Hitchman ML. Chapter 1. Overview of Chemical Vapour Deposition. In: Chemical Vapour Deposition. 2008.

Yan Y, Zhang Y, Meng G, Zhang L. Synthesis of ZnO nanocrystals with novel hierarchical structures via atmosphere pressure physical vapor deposition method. J Cryst Growth. 2006;294(2):184–90.

Xia J, Li XZ, Huang X, Mao N, Zhu DD, Wang L, et al. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale. 2016;8(4):2063–70.

Wang L, Zhang X, Zhao S, Zhou G, Zhou Y, Qi J. Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c -oriented ZnO thin films without catalysts or additives. Appl Phys Lett. 2005;86(2):2–4.

Jeong JS, Lee JY, Lee CJ, An SJ, Yi GC. Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chem Phys Lett. 2004;384(4–6):246–50.

Lyu SC, Zhang Y, Lee CJ, Ruh H, Lee HJ. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem Mater. 2003;15(17):3294–9.

Kumar R. United States Patent (19) (11) Patent Number: 4,711,645. 1986;(19):8–12.

Kai W, Liwei L, Wen X, Shengzhe Z, Yong L, Hongwei Z, et al. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance. Int J Electrochem Sci. 2017;12(9):8306–14.

Takahashi K, Wang Y, Cao G. Growth and electrochromic properties of single-crystal V2O5 nanorod arrays. Appl Phys Lett. 2005;86(5):1–3.

Takahashi K, Limmer SJ, Wang Y, Cao G. Synthesis and electrochemical properties of single-crystal V 2O5 nanorod arrays by template-based electrodeposition. J Phys Chem B. 2004;108(28):9795–800.

Grujicic D, Pesic B. Electrodeposition of copper: The nucleation mechanisms. Electrochim Acta. 2002;47(18):2901–12.

Gomez IJ, Arnaiz B, Cacioppo M, Arcudi F, Prato M. Nitrogen-doped Carbon Nanodots for bioimaging and delivery of paclitaxel. J Mater Chem B. 2018;6(35).

Kamalakar MV, Raychaudhuri AK. A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field. Adv Mater. 2008;20(1):149–54.

Wang L, Ding W, Sun Y. The preparation and application of mesoporous materials for energy storage. Mater Res Bull [Internet]. 2016;83:230–49. Available from: http://dx.doi.org/10.1016/j.materresbull.2016.06.008

Taylor R, Rukmini E. Microwave Assistance in the Copper-Catalyzed Reactions of Aliphatic Alcohols with Aryl Iodides. 2019;(I):158.

Gedye RN, Rank W, Westaway KC. The rapid synthesis of organic compounds in microwave ovens. II. Can J Chem. 1991;69(4):706–11.

Kappe CO, Dallinger D. The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov. 2006;5(1):51–63.

Küçükbay H, Şireci N, Yilmaz Ü, Deniz S, Akkurt M, Baktir Z, et al. Synthesis, characterization, and microwave-promoted catalytic activity of novel benzimidazole salts bearing silicon-containing substituents in Heck-Mizoroki and Suzuki-Miyaura cross-coupling reactions under aerobic conditions. Turkish J Chem. 2012;36(2):201–17.

Huang LZ, Han P, Li YQ, Xu YM, Zhang T, Du ZT. A facile and efficient synthesis of diaryl amines or ethers under microwave irradiation at presence of KF/AL2O3 without solvent and their anti-fungal biological activities against six phytopathogens. Int J Mol Sci. 2013;14(9):18850–60.

Tompsett GA, Conner WC, Yngvesson KS. Microwave synthesis of nanoporous materials. ChemPhysChem. 2006;7(2):296–319.

Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, Sivagurunathan P, Saratale GD, Dung TNB, et al. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Reports [Internet]. 2017;14:1–7. Available from: http://dx.doi.org/10.1016/j.btre.2017.02.001

Nagaich U, Gulati N, Chauhan S. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract. J Pharm. 2016;2016:1–8.

Greeshma N. Diatoms for Nano-Manufacturing: New Principles for Orientation and Immobilization. 2011;5–6.

Santos A, Troncoso C, Lamilla C, Llanquinao V, Pavez M, Barrientos L. Nanopartículas Sintetizadas por Bacterias Antárticas y sus Posibles Mecanismos de Síntesis. Int J Morphol. 2017;35(1):26–33.




DOI: https://doi.org/10.23857/pc.v5i8.1597

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/