Caracterización tecnológica de los sistemas de emisiones contaminantes de los motores de encendido en vehículos automotrices
Resumen
El efecto invernadero es una de las actividades más desafiantes en la contaminación atmosférica y una de las mayores amenazas ambientales. Los gases de efecto invernadero más importantes son el dióxido de carbono (CO2), el óxido nitroso (N2O), metano (CH4), fluoro carbonos (CF) y clorofluorocarbonos (CFC). Se llevaron a cabo el análisis de los sistemas actuales de los reactores catalíticos, los reactores químicos y los filtros de partículas como estrategias de la reducción de las emisiones de los motores, como las partículas y muchos gases más, por la creciente preocupación por el medio ambiente y la regulación gubernamental más estricta sobre las emisiones de escape. Se concluye que en un futuro se deben considerar diferentes parámetros objetivos, como combinación de los componentes analizados, un caso de esto será el catalizador de oxidación diésel (DOC) promueve la oxidación de componentes de escape como CO, hidrocarburos (HC) y NOx, y el Catalizador SCR que cumple la reducción de NOx completando un sistema diésel de mitigación de contaminantes.
Palabras clave
Referencias
Abouemara, K., & Fikry, S. (2020). Emission Control Technologies in Spark Ignition Engines. Journal of Student Research, 9(1). https://doi.org/10.47611/jsr.v9i1.1101
Campau, R. M., Stefan, A., & Hancock, E. E. (1972). Ford durability experience on low emission concept vehicles. SAE Technical Papers. https://doi.org/10.4271/720488
El-Faroug, M., Yan, F., Luo, M., Fiifi Turkson, R., El-Faroug, M. O., Yan, F., Luo, M., & Fiifi Turkson, R. (2016). Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline. Energies, 9(12), 984. https://doi.org/10.3390/en9120984
Ghazanfar, Mehdi Song, Zhou Yuanqing, Zhu Zubair, Ali Shah, Kishore Chand, Raza Waleed Asif, R. (2019). Review on SCR catalysts by focusing impacts of sulfur on SCR performance. Sukkur IBA Journal of Emerging Technologies, 2(1), 27–44. https://doi.org/10.30537/sjet.v2i1.384
Irwin, K. J., Douglas, R., Stewart, J., Pedlow, A., Stalker, R. M., & Woods, A. (2017). Further Analysis of the Effect of Oxygen Concentration on the Thermal Aging of Automotive Catalysts. SAE Technical Papers, 2017-Septe. https://doi.org/10.4271/2017-24-0136
Irwin, K. J., Stewart, J., Douglas, R., Woods, A., O’Shaughnessy, R., Pedlow, A., & Stalker, R. M. (2017). Analysis of the Effect of Oxygen Concentration on the Thermal Aging of Automotive Catalysts. SAE Technical Papers, 2017-March(March). https://doi.org/10.4271/2017-01-0998
Johnson, T., & Joshi, A. (2018). Review of Vehicle Engine Efficiency and Emissions. SAE International Journal of Engines, 11(6), 1307–1330. https://doi.org/10.4271/2018-01-0329
Lee, J., Theis, J. R., & Kyriakidou, E. A. (2019). Vehicle emissions trapping materials: Successes, challenges, and the path forward. In Applied Catalysis B: Environmental (Vol. 243, pp. 397–414). https://doi.org/10.1016/j.apcatb.2018.10.069
Li, S., Liu, T., Song, W., Pei, C., Huang, Z., Wang, Y., Chen, Y., Yan, J., Zhang, R., Zhang, Y., & Wang, X. (2021). Emission factors of ammonia for on-road vehicles in urban areas from a tunnel study in south China with laser-absorption based measurements. Environmental Pollution, 280. https://doi.org/10.1016/j.envpol.2021.116972
Lyu, M., Bao, X., Zhu, R., & Matthews, R. (2020). State-of-the-art outlook for light-duty vehicle emission control standards and technologies in China. In Clean Technologies and Environmental Policy (Vol. 22, Issue 4, pp. 757–771). https://doi.org/10.1007/s10098-020-01834-x
Mukherjee, A., Roy, K., Bagchi, J., & Mondal, K. (2016). Emission Catalytic Converter in Automobile Exhaust Emission. Journal for Research, 02(10), 29–33.
Paolucci, C., Khurana, I., Parekh, A. A., Li, S., Shih, A. J., Li, H., Di Iorio, J. R., Albarracin-Caballero, J. D., Yezerets, A., Miller, J. T., Delgass, W. N., Ribeiro, F. H., Schneider, W. F., & Gounder, R. (2017). Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science, 357(6354), 898–903. https://doi.org/10.1126/science.aan5630
Papetti, V., Dimopoulos Eggenschwiler, P., Emmanouil, V., & Koltsakis, G. (2019). Analysis of TWC Characteristics in a Euro6 Gasoline Light Duty Vehicle. SAE Technical Papers, 2019-Septe(September). https://doi.org/10.4271/2019-24-0162
Pieber, S., Kumar, N., Klein, F., Comte, P., Bhattu, D., Dommen, J., Bruns, E., Kilic, D., El Haddad, I., Keller, A., Czerwinski, J., Heeb, N., Baltensperger, U., Slowik, J., & Prévôt, A. (2017). Gas phase composition and secondary organic aerosol formation from gasoline direct injection vehicles investigated in batch and flow reactors: effects of prototype gasoline particle filters. Atmospheric Chemistry and Physics, 1–41. https://doi.org/10.5194/acp-2017-942
Pla, B., Bares, P., Sanchis, E., & Aronis, A. (2020). Ammonia injection optimization for selective catalytic reduction aftertreatment systems. International Journal of Engine Research. https://doi.org/10.1177/1468087420933125
Russell, A., & Epling, W. S. (2011). Diesel oxidation catalysts. In Catalysis Reviews - Science and Engineering (Vol. 53, Issue 4, pp. 337–423). https://doi.org/10.1080/01614940.2011.596429
Sassykova, L. R., Aubakirov, Y. A., Sendilvelan, S., Tashmukhambetova, Z. K., Faizullaeva, M. F., Bhaskar, K., Batyrbayeva, A. A., Ryskaliyeva, R. G., Tyussyupova, B. B., Zhakupova, A. A., & Sarybayev, M. A. (2019). The Main Components of Vehicle Exhaust Gases and Their Effective Catalytic Neutralization. Oriental Journal of Chemistry, 35(1), 110–127. https://doi.org/10.13005/ojc/350112
Selleri, T., Melas, A. D., Joshi, A., Manara, D., Perujo, A., & Suarez-Bertoa, R. (2021). An overview of lean exhaust denox aftertreatment technologies and nox emission regulations in the european union. In Catalysts (Vol. 11, Issue 3). https://doi.org/10.3390/catal11030404
Shen, M., Zhang, Y., Wang, J., Wang, C., & Wang, J. (2018). Nature of SO3 poisoning on Cu/SAPO-34 SCR catalysts. Journal of Catalysis, 358, 277–286. https://doi.org/10.1016/j.jcat.2017.12.008
Suarez-Bertoa, R., Pechout, M., Vojtíšek, M., & Astorga, C. (2020). Regulated and non-regulated emissions from euro 6 diesel, gasoline and CNG vehicles under real-world driving conditions. Atmosphere, 11(2). https://doi.org/10.3390/atmos11020204
Tyagi, R. K., & Ranjan, R. (2015). Effect of heating the catalytic converter on emission characteristic of gasoline automotive vehicles. International Journal of Ambient Energy, 36(5), 235–241. https://doi.org/10.1080/01430750.2013.853205
Walid Bizreh, Y., Al-Hamoud, L., & AL-Joubeh, M. (2014). A study on the catalytic activity of new catalysts for removal of NOx, CH and CO emitted from car exhaust. Journal of the Association of Arab Universities for Basic and Applied Sciences, 16, 55–63. https://doi.org/10.1016/j.jaubas.2013.06.001
Xue, J., Li, Y., Quiros, D., Hu, S., Huai, T., Ayala, A., & Jung, H. S. (2017). Investigation of alternative metrics to quantify PM mass emissions from light duty vehicles. Journal of Aerosol Science, 113, 85–94. https://doi.org/10.1016/j.jaerosci.2017.07.021
Payri González, F., & Desantes Fernández, J. M. (2011). Motores de combustión interna alternativos. Editorial Universitat politécnica de valencia.
DOI: https://doi.org/10.23857/pc.v6i9.3088
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/