Estudio de los procesos de remoción de hierro y manganeso en aguas subterráneas: una revisión
Resumen
El hierro y el manganeso son de los elementos contaminantes más comunes en el agua subterránea, los cuales en la mayoría de las ocasiones superan los límites impuestos por las legislaciones que regulan los parámetros del agua de consumo. Considerando que cuando las concentraciones de estos metales superan dichos límites, estos pueden causar problemas estéticos, operativos e inclusive de salud pública; esta revisión proporciona información referente a las diferentes investigaciones sobre procesos de remoción de hierro y manganeso mediante procesos físicos, químicos y biológicos, profundizando en tecnologías convencionales e innovadoras. Este estudio se basa en el análisis de los procesos de remoción de hierro y manganeso en aguas especialmente las de origen subterráneo, buscando comparar la eficiencia de remoción de hierro y manganeso de dichos procesos, basados en datos de investigaciones. Encontrando así que el desarrollo de los métodos de remoción de los últimos años, logran eficiencias superiores al 90%, por lo general en compañía de procesos suplementarios y que la selección de la tecnología de remoción estará determinada por criterios técnicos y económicos de acuerdo a las condiciones del efluente.
Palabras clave
Referencias
Aji, M., Gutti, B., & Highina, B. (2015). Application of activated carbon in removal of iron and manganese from alau dam water in maiduguri. Columban J. Life Sci., 17(1), 35-39.
Anu, Y. (2015). Bioremediation of wastewater using various sorbents and vegetable enzymes. Research in Biotechnology, 6(5), 16-23. http://updatepublishing.com/journal/index.php/rib/article/view/2482/2460
Aschner, A., Erikson, V., Bebee, J., Jim, K., Beckett, M., & Clement , J. (2009). Manganese and its Role in Parkinson’s Disease: From Transport to Neuropathology. Neuromol. Med., 11(1), 252-266.
Aziz, H. A., Othman, N., Yusuff, M. S., Basri, D. R. H., Ashaari, F. A. H., Adlan, M. N., Othman, F., Johari, M., & Perwira, M. (2001). Removal of copper from water using limestone filtration technique: Determination of mechanism of removal. Environment International, 26(5), 395-399. https://doi.org/10.1016/S0160-4120(01)00018-6
Bin Jusoh, A., Cheng, W. H., Low, W. M., Nora’aini, A., & Megat Mohd Noor, M. J. (2005). Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination, 182(1), 347-353. https://doi.org/10.1016/j.desal.2005.03.022
Bora, A. J., Mohan, R., & Dutta, R. K. (2017). Simultaneous removal of arsenic, iron and manganese from groundwater by oxidation-coagulation-adsorption at optimized pH. Water Supply, 18(1), 60-70. https://doi.org/10.2166/ws.2017.092
Burbano, L. M. M. (2011). REMOCIÓN DE HIERRO Y MANGANESO POR OXIDACIÓN CON CLORO Y FILTRACIÓN EN [Maestría, UNIVERSIDAD DEL VALLE]. https://bibliotecadigital.univalle.edu.co/bitstream/handle/10893/7908/CB-0450286.pdf?sequence=1&isAllowed=y
Cheng, L.-H., Xiong, Z.-Z., Cai, S., Li, D.-W., & Xu, X.-H. (2020). Aeration-manganese sand filter-ultrafiltration to remove iron and manganese from water: Oxidation effect and fouling behavior of manganese sand coated film. Journal of Water Process Engineering, 38, 101621. https://doi.org/10.1016/j.jwpe.2020.101621
Cheng, Q., Nengzi, L., Bao, L., Huang, Y., Liu, S., Cheng, X., Li, B., & Zhang, J. (2017). Distribution and genetic diversity of microbial populations in the pilot-scale biofilter for simultaneous removal of ammonia, iron and manganese from real groundwater. Chemosphere, 182, 450-457. https://doi.org/10.1016/j.chemosphere.2017.05.075
Civardi, J., & Tompeck, M. (2015). Iron and Manganese Removal Handbook. American Water Works Association.
COUNCIL. (2020). COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN
Dalai, C., Jha, R., & Desai, V. R. (2015). Rice Husk and Sugarcane Baggase Based Activated Carbon for Iron and Manganese Removal. Aquatic Procedia, 4, 1126-1133. https://doi.org/10.1016/j.aqpro.2015.02.143
Das, D., & Nandi, B. K. (2019). Removal of Fe (II) ions from drinking water using Electrocoagulation (EC) process: Parametric optimization and kinetic study. Journal of Environmental Chemical Engineering, 7(3), 103116. https://doi.org/10.1016/j.jece.2019.103116
Diaz-Alarcón, J. A., Alfonso-Pérez, M. P., Vergara-Gómez, I., Díaz-Lagos, M., & Martínez-Ovalle, S. A. (2019). Removal of iron and manganese in groundwater through magnetotactic bacteria. Journal of Environmental Management, 249, 109381. https://doi.org/10.1016/j.jenvman.2019.109381
Du, X., Liu, G., Qu, F., Li, K., Shao, S., Li, G., & Liang, H. (2017). Removal of iron, manganese and ammonia from groundwater using a PAC-MBR system: The anti-pollution ability, microbial population and membrane fouling. Desalination, 403, 97-106. https://doi.org/10.1016/j.desal.2016.03.002
Duque, A. L. (2009). Remoción de hierro y manganeso en aguas subterráneas mediante doble filtración con flujo a presión. Caso el hormiguero - Cali [UNIVERSIDAD DEL VALLE]. https://bibliotecadigital.univalle.edu.co/bitstream/handle/10893/7663/7779-0393976.pdf?sequence=1&isAllowed=y
El-naggar, H. M. (2010). Development Of Low-Cost Technology For The Removal Of Iron and Manganese From Ground Water In Siwa Oasis. J Egypt Pilbiic 1Tcnlth Assoc, 5(3), 169-188.
Elsehly, E. M. I., Chechenin, N. G., Bukunov, K. A., Makunin, A. V., Priselkova, A. B., Vorobyeva, E. A., & Motaweh, H. A. (2015). Removal of iron and manganese from aqueous solutions using carbon nanotube filters. Water Supply, 16(2), 347-353. https://doi.org/10.2166/ws.2015.143
Elsheikh, M. A., Guirguis, H., & Fathy, A. (2017). Removal of Iron and Manganese from Groundwater: A Study of Using Potassium Permanganate and Sedimentation. Mansoura Engineering Journal, 42(3), 6.
Ganesan, P., Lakshmi, J., Sozhan, G., & Vasudevan, S. (2013). Removal of manganese from water by electrocoagulation: Adsorption, kinetics and thermodynamic studies. The Canadian Journal of Chemical Engineering, 91(3), 448-458. https://doi.org/10.1002/cjce.21709
Health Canada. (09 de 2020). Guidelines for Canadian Drinking Water Quality - Summary Table. Obtenido de https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html#t2
Hiroshi, W. (2016). Revision of Drinking Water Quality Standards in Japan. Water Supply Div. http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0264pdf/ks0264011.pdf
INEN. (2006). AGUA PARA CONSUMO HUMANO. REQUISITOS 1108-2006. Quito : Servicio Ecuatoriano de Normalización.
Jakeman, A. J., Barreteau, O., Hunt, R. J., Rinaudo, J.-D., & Ross, A. (Eds.). (2016). Integrated Groundwater Management: Concepts, Approaches and Challenges. Springer International Publishing. https://doi.org/10.1007/978-3-319-23576-9
Kan, C., Chen, W., Wan, M., Phatai, P., Wittayakun, J., & Li, K. (2012). The preliminary study of iron and manganese removal from groundwater by NaOCl oxidation and MF filtration. Sustain. Environ. Res., 22(1), 25-30. https://docplayer.net/39193642-The-preliminary-study-of-iron-and-manganese-removal-from-groundwater-by-naocl-oxidation-and-mf-filtration.html
Khatri, N., Tyagi, S., & Rawtani, D. (2017). Recent strategies for the removal of iron from water: A review. Journal of Water Process Engineering, 19, 291-304. https://doi.org/10.1016/j.jwpe.2017.08.015
Komnitsas, K., Bartzas, G., & Paspaliaris, I. (2004). Efficiency of limestone and red mud barriers: Laboratory column studies. Minerals Engineering, 17(2), 183-194. https://doi.org/10.1016/j.mineng.2003.11.006
Kwakye, B., Sefa, B., Von, E., Nkrumah, I., & Williams, C. (2019). Adsorptive Removal of Iron and Manganese from Groundwater Samples in Ghana by Zeolite Y Synthesized from Bauxite and Kaolin. Water Journal, 11(9), 1912. doi:10.3390/w11091912
Labanda, J., Khaidar, M. S., & Llorens, J. (2009). Feasibility study on the recovery of chromium (III) by polymer enhanced ultrafiltration. Desalination, 249(2), 577-581. https://doi.org/10.1016/j.desal.2008.06.031
Le, N. L., & Nunes, S. P. (2016). Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies, 7, 1-28. https://doi.org/10.1016/j.susmat.2016.02.001
Li, C., Wang, S., Du, X., Cheng, X., Fu, M., Hou, N., & Li, D. (2016). Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater. Bioresource Technology, 220, 76-84. https://doi.org/10.1016/j.biortech.2016.08.020
Lin, J.-L., Huang, C., Pan, J. R., & Wang, Y.-S. (2013). Fouling mitigation of a dead-end microfiltration by mixing-enhanced preoxidation for Fe and Mn removal from groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 419, 87-93. https://doi.org/10.1016/j.colsurfa.2012.11.053
Mettler, S., Wolthers, M., Charlet, L., & Gunten, U. von. (2009). Sorption and catalytic oxidation of Fe(II) at the surface of calcite. Geochimica et Cosmochimica Acta, 73(7), 1826-1840. https://doi.org/10.1016/j.gca.2009.01.003
Ministerio de Protección Social. (2007). RESOLUCIÓN NÚMERO 2115. Bogotá: Ministro de Ambiente, Vivienda y Desarrollo Territorial.
Mizoram. (2012). Indian Standard Drinking Water- Specification. Government of Mizoram. https://mpcb.mizoram.gov.in/uploads/attachments/d6c72ef548b2660da564372278a7c125/pages-160-indian-standards.pdf
Mollah, M. Y. A., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (EC)—Science and applications. Journal of Hazardous Materials, 84(1), 29-41. https://doi.org/10.1016/S0304-3894(01)00176-5
NOM. (1994). NORMA OFICIAL MEXICANA NOM-127-SSA1-1994, "SALUD AMBIENTAL, AGUA PARA USO Y CONSUMO HUMANO-LIMITES PERMISIBLES DE CALIDAD Y TRATAMIENTOS A QUE DEBE SOMETERSE EL AGUA PARASU POTABILIZACION". Mexico: Comisión Nacional del agua.
Pandey, G., Rawtani, D., & Agrawal, Y. K. (2016). Aspects of Nanoelectronics in Materials Development. En Nanoelectronics and Materials Development. IntechOpen. https://doi.org/10.5772/64414
Patil, D. S., Chavan, S. M., & Oubagaranadin, J. U. K. (2016). A review of technologies for manganese removal from wastewaters. Journal of Environmental Chemical Engineering, 4(1), 468-487. https://doi.org/10.1016/j.jece.2015.11.028
Pavon, R., & Xilomen, C. (2018). Efecto de la plata (Ag1+) y el hierro (Fe3+) sobre la sorción de manganeso por zeolitas naturales modificadas [Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información.]. http://zaloamati.azc.uam.mx/handle/11191/6814
Pleasant, S., O’Donnell, A., Powell, J., Jain, P., & Townsend, T. (2014). Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill. Science of The Total Environment, 485-486, 31-40. https://doi.org/10.1016/j.scitotenv.2014.03.028
Roccaro, P., Barone, C., Mancini, G., & Vagliasindi, F. G. A. (2007). Removal of manganese from water supplies intended for human consumption: A case study. Desalination, 210(1), 205-214. https://doi.org/10.1016/j.desal.2006.05.045
Ruiz, Á. A. (2005). La electrocoagulación: Una alternativa para el tratamiento de aguas residuales. Revista Lasallista de Investigación, 2(1), 49-56.
Rusydi, A., Onodera, S., Saito, M., Ioka, S., Maria, R., Ridwansyah, I., & Delinom, R. (2021). Vulnerability of groundwater to iron and manganese contamination in the coastal alluvial plain of a developing Indonesian city. SN Applied Sciences, 3(2021), 399.
Shkolnikov, V., Bahga, S. S., & Santiago, J. G. (2012). Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation. Physical Chemistry Chemical Physics, 14(32), 11534-11545. https://doi.org/10.1039/C2CP42121F
SINAC. (2004). Calidad del agua de consumo humano en España. Madrid : Ministerio de calidad y consumo.
Štembal, T., Markić, M., Ribičić, N., Briški, F., & Sipos, L. (2005). Removal of ammonia, iron and manganese from groundwaters of northern Croatia—Pilot plant studies. Process Biochemistry, 40(1), 327-335. https://doi.org/10.1016/j.procbio.2004.01.006
Swistock, B. (2019). Iron and Manganese in Private Water Systems. PennState Extension. Obtenido de https://extension.psu.edu/iron-and-manganese-in-private-water-systems#:~:text=Manganese%20often%20results%20in%20a,manganese%20of%200.3%20mg%2FL.
Tang, X., Zhang, Q., Liu, Z., Pan, K., Dong, Y., & Li, Y. (2014). Removal of Cu(II) by loofah fibers as a natural and low-cost adsorbent from aqueous solutions. Journal of Molecular Liquids, 191, 73-78. https://doi.org/10.1016/j.molliq.2013.11.034
Tekerlekopoulou, A. G., Vasiliadou, I. A., & Vayenas, D. V. (2006). Physico-chemical and biological iron removal from potable water. Biochemical Engineering Journal, 31(1), 74–83. doi:10.1016/j.bej.2006.05.020
Vigneswaran, S., & Visvanathan, C. (1995). Water Treatment Processes: Simple Options. CRC Press.
Vries, D., Bertelkamp, C., Schoonenberg Kegel, F., Hofs, B., Dusseldorp, J., Bruins, J. H., de Vet, W., & van den Akker, B. (2017). Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration. Water Research, 109, 35-45. https://doi.org/10.1016/j.watres.2016.11.032
Wang, Y., Pleasant, S., Jain, P., Powell, J., & Townsend, T. (2016). Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills. Waste Management, 53, 128-135. https://doi.org/10.1016/j.wasman.2016.02.018
Wang, Y., Sikora, S., Kim, H., Bonzongo, J.-C., Rhue, D., & Townsend, T. G. (2013). Evaluation of mineral substrates for in situ iron removal from groundwater. Environmental Earth Sciences, 69(7), 2247-2255. https://doi.org/10.1007/s12665-012-2054-8
Zevi, Y., Dewita, S., Aghasa, A., & Dwinandha, D. (2018a). Removal of Iron and Manganese from Natural Groundwater by Continuous Reactor Using Activated and Natural Mordenite Mineral Adsorption. IOP Conference Series: Earth and Environmental Science, 111, 012016. https://doi.org/10.1088/1755-1315/111/1/012016
DOI: https://doi.org/10.23857/pc.v6i9.3118
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/