Análisis geoestadístico de la evolución temporal de los páramos de la microcuenca del río Cebadas, mediante el Índice de Vegetación de Diferencia Normalizado (NDVI) y su relación con la precipitación
Resumen
Los páramos andinos son ecosistemas de gran altitud con una biodiversidad única y diversos servicios ecosistémicos importantes. Albergan especies endémicas y además desempeñan un papel significativo en el secuestro de carbono y la regulación hídrica; estudios recientes hacen uso de la teledetección para monitorear los páramos con resultados en menor tiempo y costo. La investigación se ejecutó en la microcuenca del río Cebadas y se utilizaron dos imágenes MOD13A1.061 Terra Vegetation Índices del satélite Terra de la NASA para analizar los cambios en la cobertura vegetal durante un año, comparando NDVI de marzo 2023 y marzo 2024. La precipitación se obtuvo de la base de datos WorldClim Global Climate versión 2.0 Data, con una resolución de 30 segundos. Las imágenes fueron procesadas y clasificadas usando QGIS, reclasificando en 4 clases y transformando los productos a polígonos. Se crearon mallas de 500x500 metros para extraer puntos georreferenciados. Se realizó un análisis de autocorrelación espacial con el índice de Moran y el High/Low Clustering (Getis-Ord General G). Finalmente, se aplicó la correlación de Spearman para analizar la relación entre NDVI y precipitación.
Se determinó que, en 2023, los valores bajos de NDVI se concentraron al noreste y sureste de Cebadas, reduciéndose en 2024 en un 86.7%. Los valores medios de NDVI se redujeron en un 24.8%, concentrándose al sur de Cebadas y al norte de Achupallas en 2024. Los valores altos de NDVI aumentaron un 159.8%, concentrándose al noroeste de Cebadas. Los valores muy altos de NDVI disminuyeron en un 29.1%. La prueba de Spearman mostró una relación inversa significativa entre NDVI y precipitación. El análisis de Moran indicó una distribución agregada para precipitación y NDVI, mientras que el análisis High/Low Clustering mostró patrones significativos de agrupación de valores altos.
La microcuenca mostró una notable disminución en áreas con bajos valores de NDVI y un aumento en áreas con altos valores de NDVI, sugiriendo mejoras en la cobertura vegetal. Los análisis espaciales revelaron patrones agregados en la distribución de precipitación y NDVI. Se encontró una relación inversa significativa entre NDVI y precipitación, destacando la compleja dinámica de estos ecosistemas.
Palabras clave
Referencias
Asam, S., Callegari, M., Matiu, M., Fiore, G., Gregorio, L., Jacob, A., … & Notarnicola, C. (2018). Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the alps—an earth observation-based analysis. Remote Sensing, 10(11), 1757. https://doi.org/10.3390/rs10111757
Baniya, B., Tang, Q., Huang, Z., Sun, S., & Techato, K. (2018). Spatial and temporal variation of ndvi in response to climate change and the implication for carbon dynamics in nepal. Forests, 9(6), 329. https://doi.org/10.3390/f9060329
Bhunia, G., Roy, S., & Shit, P. (2021). Spatio-temporal analysis of covid-19 in india – a geostatistical approach. Spatial Information Research, 29(5), 661-672. https://doi.org/10.1007/s41324-020-00376-0
Bin, X., Qi, B., Ji, K., Liu, Z., Deng, L., & Jiang, L. (2022). Emerging hot spot analysis and the spatial–temporal trends of ndvi in the jing river basin of china. Environmental Earth Sciences, 81(2). https://doi.org/10.1007/s12665-022-10175-5
Buytaert, W., Iñiguez, V., & Bièvre, B. (2007). The effects of afforestation and cultivation on water yield in the andean páramo. Forest Ecology and Management, 251(1-2), 22-30. https://doi.org/10.1016/j.foreco.2007.06.035
Buytaert, W., Wyseure, G., Bièvre, B., & Deckers, J. (2005). The effect of land‐use changes on the hydrological behaviour of histic andosols in south ecuador. Hydrological Processes, 19(20), 3985-3997. https://doi.org/10.1002/hyp.5867
Cabello, K., Germentil, M., Blanco, A., Macatulad, E., & Salmo, S. (2021). Post-disaster assessment of mangrove forest recovery in lawaan-balangiga, eastern samar using ndvi time series analysis. Isprs Annals of the Photogrammetry Remote Sensing and Spatial Information Sciences, V-3-2021, 243-250. https://doi.org/10.5194/isprs-annals-v-3-2021-243-2021
Calderón-Loor, M., Cuesta, F., Pinto, E., & Gosling, W. (2020). Carbon sequestration rates indicate ecosystem recovery following human disturbance in the equatorial andes. Plos One, 15(3), e0230612. https://doi.org/10.1371/journal.pone.0230612
Chen, S., Zhu, Z., Liu, X., & Li, Y. (2022). Variation in vegetation and its driving force in the pearl river delta region of china. International Journal of Environmental Research and Public Health, 19(16), 10343. https://doi.org/10.3390/ijerph191610343
Cutiupala, G. M. A., Lucio, M. V., Colcha, D. F. C., & Ramírez, M. B. B. (2023). Análisis del estado del suelo de los ríos Cebadas-Yasipan de la microcuenca del río Cebadas, provincia de Chimborazo. Polo del Conocimiento: Revista científico-profesional, 8(11), 112-125.
Daham, A., Han, D., Rico-Ramirez, M., & Marsh, A. (2018). Analysis of nvdi variability in response to precipitation and air temperature in different regions of iraq, using modis vegetation indices. Environmental Earth Sciences, 77(10). https://doi.org/10.1007/s12665-018-7560-x
Ding, J. and Yu, D. (2014). Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the werigan–kuqa oasis, china, using remote sensing and electromagnetic induction instruments. Geoderma, 235-236, 316-322. https://doi.org/10.1016/j.geoderma.2014.07.028
Dobson, P. and Gelade, G. (2012). Exploring the roots of culture using spatial autocorrelation. Cross-Cultural Research, 46(2), 160-187. https://doi.org/10.1177/1069397111430460
Dormann, C., McPherson, J., Araújo, M., Bivand, R., Bolliger, J., Carl, G., … & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30(5), 609-628. https://doi.org/10.1111/j.2007.0906-7590.05171.x
Dray, S. (2011). A new perspective about moran's coefficient: spatial autocorrelation as a linear regression problem. moran系数的新视角:空间自相关视为线性回归问题. Geographical Analysis, 43(2), 127-141. https://doi.org/10.1111/j.1538-4632.2011.00811.x
Fick, s. e., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
Guan, Q., Yang, L., Pan, N., Lin, J., Xu, C., Wang, F., … & Liu, Z. (2018). Greening and browning of the hexi corridor in northwest china: spatial patterns and responses to climatic variability and anthropogenic drivers. Remote Sensing, 10(8), 1270. https://doi.org/10.3390/rs10081270
Guerrero-Casado, J. and Zambrano, R. (2020). The worrisome conservation status of ecosystems within the distribution range of the spectacled bear tremarctos ornatus (mammalia: carnivora: ursidae) in ecuador. Journal of Threatened Taxa, 12(10), 16204-16209. https://doi.org/10.11609/jott.5517.12.10.16204-16209
Gutiérrez, S., Rivera, I., Torrez, M., Ocaña, E., Rowe, E., & Ochoa-Tocachi, B. (2021). Effects of agriculture and seasonality on the soil hydrophysical properties of high-andean dry páramo grasslands.. https://doi.org/10.22541/au.162695885.59250160/v1
Gutiérrez-Salazar, P. and Medrano-Vizcaíno, P. (2019). The effects of climate change on decomposition processes in andean paramo ecosystem–synthesis, a systematic review. Applied Ecology and Environmental Research, 17(2), 4957-4970. https://doi.org/10.15666/aeer/1702_49574970
Hansen, J., Ruedy, R., Sato, M. K. I., & Lo, K. (2002). Global warming continues. Science, 295(5553), 275-275.
Higginbottom, T. and Symeonakis, E. (2020). Identifying ecosystem function shifts in africa using breakpoint analysis of long-term ndvi and rue data. Remote Sensing, 12(11), 1894. https://doi.org/10.3390/rs12111894
Horion, S., Fensholt, R., Tagesson, T., & Ehammer, A. (2014). Using earth observation-based dry season ndvi trends for assessment of changes in tree cover in the sahel. International Journal of Remote Sensing, 35(7), 2493-2515. https://doi.org/10.1080/01431161.2014.883104
Hossain, F., Das, P., Srinivasan, M., Tsontos, V., Oaida, C., Nickles, C., … & Pavelsky, T. (2022). Building user‐readiness for satellite earth observing missions: the case of the surface water and ocean topography (swot) mission. Agu Advances, 3(6). https://doi.org/10.1029/2022av000680
Huang, X., Zhang, T., Yi, G., He, D., Zhou, X., Li, J., … & Miao, J. (2019). Dynamic changes of ndvi in the growing season of the tibetan plateau during the past 17 years and its response to climate change. International Journal of Environmental Research and Public Health, 16(18), 3452. https://doi.org/10.3390/ijerph16183452
Illarionova, S., Nesteruk, S., Shadrin, D., Ignatiev, V., Pukalchik, M., & Oseledets, I. (2021). Mixchannel: advanced augmentation for multispectral satellite images. Remote Sensing, 13(11), 2181. https://doi.org/10.3390/rs13112181
Ivushkin, K., Bartholomeus, H., Bregt, A., & Pulatov, A. (2017). Satellite thermography for soil salinity assessment of cropped areas in uzbekistan. Land Degradation and Development, 28(3), 870-877. https://doi.org/10.1002/ldr.2670
Kabetta, H. (2020). Chlorophyll segmentation of satellite image with region-based active contours.. https://doi.org/10.31227/osf.io/mvdaq
Kang, Y., Guo, E., Wang, Y., Bao, Y., & Mandula, N. (2021). Monitoring vegetation change and its potential drivers in inner mongolia from 2000 to 2019. Remote Sensing, 13(17), 3357. https://doi.org/10.3390/rs13173357
Kattan, G., Hernández, O., Goldstein, I., Rojas, V., Murillo, O., Gómez, C., … & Cuesta, F. (2004). Range fragmentation in the spectacled bear tremarctos ornatus in the northern andes. Oryx, 38(2), 155-163. https://doi.org/10.1017/s0030605304000298
Lettenmaier, D., Alsdorf, D., Dozier, J., Huffman, G., Pan, M., & Wood, E. (2015). Inroads of remote sensing into hydrologic science during the wrr era. Water Resources Research, 51(9), 7309-7342. https://doi.org/10.1002/2015wr017616
Li, G., Yu, L., Liu, T., Bao, Y., Yu, J., Xin, B., … & Zhang, S. (2023). Spatial and temporal variations of grassland vegetation on the mongolian plateau and its response to climate change. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1067209
Liu, X. and Xin, L. (2021). China’s deserts greening and response to climate variability and human activities. Plos One, 16(8), e0256462. https://doi.org/10.1371/journal.pone.0256462
Löfgren, O., Prentice, H., Moeckel, T., Schmid, B., & Hall, K. (2018). Landscape history confounds the ability of the ndvi to detect fine‐scale variation in grassland communities. Methods in Ecology and Evolution, 9(9), 2009-2018. https://doi.org/10.1111/2041-210x.13036
Lücking, R., Dal-Forno, M., Sikaroodi, M., Gillevet, P., Bungartz, F., Moncada, B., … & Lawrey, J. (2014). A single macrolichen constitutes hundreds of unrecognized species. Proceedings of the National Academy of Sciences, 111(30), 11091-11096. https://doi.org/10.1073/pnas.1403517111
Montenegro-Díaz, P., Ochoa‐Sánchez, A., & Célleri, R. (2019). Impact of tussock grasses removal on soil water content dynamics of a tropical mountain hillslope. Ecohydrology, 12(8). https://doi.org/10.1002/eco.2146
Ólafsson, H. and Rousta, I. (2021). Influence of atmospheric patterns and north atlantic oscillation (nao) on vegetation dynamics in iceland using remote sensing. European Journal of Remote Sensing, 54(1), 351-363. https://doi.org/10.1080/22797254.2021.1931462
Ortega-Andrade, H., Prieto-Torres, D., Gómez-Lora, I., & Lizcano, D. (2015). Ecological and geographical analysis of the distribution of the mountain tapir (tapirus pinchaque) in ecuador: importance of protected areas in future scenarios of global warming. Plos One, 10(3), e0121137. https://doi.org/10.1371/journal.pone.0121137
Pei, F., Zhou, Y., & Xia, Y. (2021). Application of normalized difference vegetation index (ndvi) for the detection of extreme precipitation change. Forests, 12(5), 594. https://doi.org/10.3390/f12050594
Pujianto, M., Raharjo, M., & Nurjazuli, N. (2020). Spatial pattern analysis on dengue hemorrhagic fever (dhf) disease in tanjung emas port area using moran index. International Journal of Environment Agriculture and Biotechnology, 5(2), 403-408. https://doi.org/10.22161/ijels.52.11
Puspita, M. (2024). Analysis of the spread of dengue hemorrhagic fever with the moran index (case study of sukoharjo regency in 2019). Iop Conference Series Earth and Environmental Science, 1314(1), 012071. https://doi.org/10.1088/1755-1315/1314/1/012071
Pyrcz, T., Clavijo, A., Uribe, S., Marín, M., Álvarez, C., & Zubek, A. (2016). Páramo de belmira as an important centre of endemism in the northern colombian andes: new evidence from pronophilina butterflies (lepidoptera: nymphalidae, satyrinae, satyrini). Zootaxa, 4179(1). https://doi.org/10.11646/zootaxa.4179.1.3
Qiu, B., Zhou, M., Qiu, Y., Liu, S., Ou, G., Ma, C., … & Li, S. (2022). An integrated spatial autoregressive model for analyzing and simulating urban spatial growth in a garden city, china. International Journal of Environmental Research and Public Health, 19(18), 11732. https://doi.org/10.3390/ijerph191811732
Rada, F., Azócar, A., & Rojas-Altuve, A. (2012). Water relations and gas exchange in coespeletia moritziana (sch. bip) cuatrec., a giant rosette species of the high tropical andes. Photosynthetica, 50(3), 429-436. https://doi.org/10.1007/s11099-012-0050-6
Reinermann, S., Asam, S., & Kuenzer, C. (2020). Remote sensing of grassland production and management—a review. Remote Sensing, 12(12), 1949. https://doi.org/10.3390/rs12121949
Ren, Y., Liu, J., Liu, S., Wang, Z., Liu, T., & Shalamzari, M. (2022). Effects of climate change on vegetation growth in the yellow river basin from 2000 to 2019. Remote Sensing, 14(3), 687. https://doi.org/10.3390/rs14030687
Rodríguez, D., Reyes, A., Gallegos-Sánchez, S., Reyes-Amaya, N., Gutiérrez, J., Suárez, R., … & Prieto, F. (2019). Northernmost distribution of the andean bear (tremarctos ornatus) in south america, and fragmentation of its associated andean forest and paramo ecosystems. Therya, 10(2), 161-170. https://doi.org/10.12933/therya-19-756
Slayback, D., Pinzón, J., Los, S., & Tucker, C. (2002). Northern hemisphere photosynthetic trends 1982–99. Global Change Biology, 9(1), 1-15. https://doi.org/10.1046/j.1365-2486.2003.00507.x
Stankov, U. and Dragicevic, V. (2015). Changes in the spatial pattern of net earnings: evidence from serbia. Acta Oeconomica, 65(3), 351-365. https://doi.org/10.1556/032.65.2015.3.1
Sun, J. and Qin, X. (2016). Precipitation and temperature regulate the seasonal changes of ndvi across the tibetan plateau. Environmental Earth Sciences, 75(4). https://doi.org/10.1007/s12665-015-5177-x
Sur, K., Dave, R., & Chauhan, P. (2018). Spatio - temporal changes in ndvi and rainfall over western rajasthan and gujarat region of india. Journal of Agrometeorology, 20(3), 189-195. https://doi.org/10.54386/jam.v20i3.541
Teferi, E., Uhlenbrook, S., & Bewket, W. (2015). Inter-annual and seasonal trends of vegetation condition in the upper blue nile (abay) basin: dual-scale time series analysis. Earth System Dynamics, 6(2), 617-636. https://doi.org/10.5194/esd-6-617-2015
Tenelanda, D., Crespo, P., & Mosquera, G. (2018). Umbrales en la respuesta de humedad del suelo a condiciones meteorológicas en una ladera altoandina. Maskana, 9(2), 53-65. https://doi.org/10.18537/mskn.09.02.07
Valencia, J., Lassaletta, L., Velázquez, E., Nicolau, J., & Gómez‐Sal, A. (2012). Factors controlling compositional changes in a northern andean páramo (la rusia, colombia). Biotropica, 45(1), 18-26. https://doi.org/10.1111/j.1744-7429.2012.00895.x
Vega-Polo, P., Argudo, A., Gutierrez, B., Rowntree, J., & Torres, M. (2020). Characterizing the genetic diversity of the andean blueberry (vaccinium floribundum kunth.) across the ecuadorian highlands. Plos One, 15(12), e0243420. https://doi.org/10.1371/journal.pone.0243420
Verbyla, D. (2008). The greening and browning of alaska based on 1982–2003 satellite data. Global Ecology and Biogeography, 17(4), 547-555. https://doi.org/10.1111/j.1466-8238.2008.00396.x
Wang, J., Lee, K., & Kwan, M. (2018). Environmental influences on leisure-time physical inactivity in the u.s.: an exploration of spatial non-stationarity. Isprs International Journal of Geo-Information, 7(4), 143. https://doi.org/10.3390/ijgi7040143
Xue, X., Wang, Z., & Hou, S. (2023). Ndvi-based vegetation dynamics and response to climate changes and human activities in guizhou province, china. Forests, 14(4), 753. https://doi.org/10.3390/f14040753
Yang, Y., Zhao, C., Han, M., Li, Y., & Yang, R. (2015). Temporal patterns of shrub vegetation and variation with precipitation in gurbantunggut desert, central asia. Advances in Meteorology, 2015, 1-11. https://doi.org/10.1155/2015/157245
Zhang, B., Wu, Y., Zhao, B., Chanussot, J., Hong, D., Yao, J., … & Gao, L. (2022). Progress and challenges in intelligent remote sensing satellite systems. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 1814-1822. https://doi.org/10.1109/jstars.2022.3148139
Zheng, L., Xing, K., Li, J., & Liu, S. (2022). Vegetation dynamics and its response to drought in the kaidu river basin during 2000-2018.. https://doi.org/10.21203/rs.3.rs-1896849/v1
Zhou, S. and Li, P. (2021). Applying bayesian belief networks to assess alpine grassland degradation risks: a case study in northwest sichuan, china. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.773759
Zhu, L., Suomalainen, J., Liu, J., Hyyppä, J., Kaartinen, H., & Haggrén, H. (2018). A review: remote sensing sensors.. https://doi.org/10.5772/intechopen.71049
DOI: https://doi.org/10.23857/pc.v9i6.7475
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/