Short-term solar energy forecasting using machine learning models: A comparative study
Resumen
Palabras clave
Referencias
Kocakusak, D., Senick, J., & Andrews, C. J. (2023). Implementing the energy transition: lessons from New Jersey’s residential solar industry.Climate Policy. https://doi.org/10.1080/14693062.2023.2202208
Shi, G., & Eftekharnejad, S. (2016, September 1). Impact of solar forecasting on power system planning.North American Power Symposium. https://doi.org/10.1109/NAPS.2016.7747909
Lin, Y., Duan, D., Hong, X., Cheng, X., Yang, L., & Cui, S. (2020, May 29).Very-Short-Term Solar Forecasting with Long Short-Term Memory (LSTM) Network. https://doi.org/10.1109/AEEES48850.2020.9121512
Guimarães, T., Costa, L. M., Leite, H., & Azevedo, L. F. (2020, September 1).A Hybrid Approach to Load Forecast at a Micro Grid level through Machine Learning algorithms. https://doi.org/10.1109/SEST48500.2020.9203308
Solano, E. S., & Affonso, C. M. (2023). Solar Irradiation Forecasting Using Ensemble Voting Based on Machine Learning Algorithms.Sustainability. https://doi.org/10.3390/su15107943
Liu, F., Qiao, R., Shen, C., & Luo, L. (2017).Designing ensemble learning algorithms using kernel methods. https://doi.org/10.1504/IJMISSP.2017.10009116
Chodakowska, E., Nazarko, J., Nazarko, Ł., Rabayah, H., Abendeh, R., & Alawneh, R. (2023). ARIMA Models in Solar Radiation Forecasting in Different Geographic Locations.Energies. https://doi.org/10.3390/en16135029
Ziyabari, S., Du, L., & Biswas, S. (2020, June 14). A Spatio-temporal Hybrid Deep Learning Architecture for Short-term Solar Irradiance Forecasting.Photovoltaic Specialists Conference. https://doi.org/10.1109/PVSC45281.2020.9300789
Wu, S.-F., Chang, C.-Y., & Lee, S.-J. (2015, March 2).Time series forecasting with missing values. https://doi.org/10.4108/ICST.INISCOM.2015.258269
Bourchtein, A., & Bourchtein, L. (2008).A Splitting Scheme for Large-Scale Atmosphere Dynamics Models. https://doi.org/10.1007/978-3-540-69848-7_51
Basavarajaiah, D. M., & Narasimha Murthy, B. (2020).Random Forest and Concept of Decision Tree Model. https://doi.org/10.1007/978-981-15-8210-3_3
Khan, M., & Srivastava, K. (2020, January 17). Regression Model for Better Generalization and Regression Analysis.International Conference on Machine Learning. https://doi.org/10.1145/3380688.3380691
Bentéjac, C., Csörgo, A., & Martínez-Muñoz, G. (2019). A Comparative Analysis of XGBoost.arXiv: Learning. https://doi.org/10.1007/S10462-020-09896-5
Huang, H., Zheng, Z., Xiao, J., Xu, G., & Wang, J. (2019).XGBoost disease probability predicting method, system and storage medium.
Tiao, G. C. (2001).Time Series: ARIMA Methods. https://doi.org/10.1016/B978-0-08-097086-8.42182-3
Alsharif, M. H., Younes, M. K., & Kim, J. (2019). Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar Radiation: The Case Study of Seoul, South Korea.Symmetry. https://doi.org/10.3390/SYM11020240
WU, T. (2006). SVM Based Algorithm for Regressive Modeling with Accurate Data Input-interval Number Output.Control and Decision.
Bisoi, R., Dash, D. R., Dash, P. K., & Tripathy, L. N. (2022). An efficient robust optimized functional link broad learning system for solar irradiance prediction.Applied Energy. https://doi.org/10.1016/j.apenergy.2022.119277
Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance.Climate Research. https://doi.org/10.3354/CR030079
Narmadha, J., Kaavya, G. N., & Preethii, S. D. (2017, April 1). Analysis on electricity generation forecasting system.International Conference on Electric Information and Control Engineering. https://doi.org/10.1109/ICEICE.2017.8191901
Liebermann, S., Um, J.-S., Hwang, Y., & Schlüter, S. (2021). Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts.Energies. https://doi.org/10.3390/EN14113030
DOI: https://doi.org/10.23857/pc.v10i4.9440
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/