Computación en la nube en un contexto de eficiencia energética y sostenibilidad ambiental

Patricio Yánez Moretta, Erick Yánez Loaiza

Resumen


La computación en la nube ha transformado profundamente la provisión de servicios tecnológicos, ofreciendo soluciones escalables, flexibles y de alta eficiencia. No obstante, su creciente adopción plantea desafíos significativos en cuanto al consumo energético y al impacto ambiental de las infraestructuras digitales. El presente análisis constituye una revisión crítica de los principales enfoques y estrategias orientadas a la eficiencia energética y la sostenibilidad ambiental en entornos de computación en la nube. A través de un análisis sistemático de literatura reciente, se abordan aspectos clave como la evolución tecnológica de la nube, los modelos de servicio y despliegue, el consumo energético en centros de datos, la eficiencia de componentes de hardware y software, y las mejores prácticas para el desarrollo sostenible de esta tecnología. Se destaca la importancia de políticas de virtualización, gestión inteligente de recursos, uso de energías renovables y métricas específicas para monitorear la eficiencia. Finalmente, se discuten oportunidades de implementación contextualizadas en países en desarrollo, donde la transición hacia una computación verde representa tanto un reto como una oportunidad para alinear innovación tecnológica con objetivos ambientales globales.


Palabras clave


Computación en la nube; eficiencia energética; sostenibilidad ambiental; centros de datos; computación verde; gestión de recursos.

Texto completo:

PDF HTML

Referencias


Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, A., Patterson, D., Rabkin, A., Stoica, I, & Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-58.

Baliga, J., Ayre, R. W., Hinton, K., & Tucker, R. S. (2011). Green cloud computing: Balancing energy in processing, storage, and transport. Proceedings of the IEEE, 99(1), 149-167.

Barroso, L., & Hölzle, U. (2009). The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines. Morgan & Claypool Publishers.

Barroso, L. A., Clidaras, J., & Hölzle, U. (2013). The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines (2nd ed.). Morgan & Claypool Publishers.

Beloglazov, A., & Buyya, R. (2010). Energy Efficient Resource Management in Virtualized Cloud Data Centers. Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, 826–831.

Beloglazov, A., & Buyya, R. (2010b). Energy efficient allocation of virtual machines in cloud data centers. In 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (pp. 577–578).

Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 1397-1420.

Beloglazov, A., Abawajy, J., & Buyya, R. (2011). Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. Future Generation Computer Systems, 28(5), 755–768.

Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. (2012). A taxonomy and survey of energy-efficient data centers and cloud computing systems. Advances in Computers, 82, 47-111.

Beloglazov, A., Abawajy, J., & Buyya, R. (2012b). Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. Future Generation Computer Systems, 28(5), 755–768.

Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., de Meer, H., Dang, M. Q., & Pentikousis, K. (2010). Energy-efficient cloud computing. The Computer Journal, 53(7), 1045-1051.

Bianzino, A. P., Chaudet, C., Rossi, D., & Rougier, J. L. (2012). A Survey of Green Networking Research. IEEE Communications Surveys & Tutorials, 14(1), 3–20.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 25(6), 599-616.

Buyya, R., Beloglazov, A., & Abawajy, J. (2010). Energy-efficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges. In Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'10).

Buyya, R., Broberg, J., & Goscinski, A. (2011). Cloud computing: Principles and paradigms. Wiley.

Dayarathna, M., Wen, Y., & Fan, R. (2016). Data Center Energy Consumption Modeling: A Survey. IEEE Communications Surveys & Tutorials, 18(1), 732–794.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience, 41(1), 23–50.

Elfizon, E., Nuñez Alvarez, J. R., Chammam, A., Al-Kharsan, I. H., Jweeg, M. J., Yánez-Moretta, P., Alayi, R., Khan, I., Byun, Y., & Madsen, D. Ø. (2023). Design-based system performance assessment of a combined power and freshwater cogeneration system. Frontiers in Energy Research, 11, 1265309.

Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid computing 360-degree compared. In Proceedings of the Grid Computing Environments Workshop (GCE '08) (pp. 1–10). IEEE.

Greenberg, S., Hamilton, J. R., Maltz, D. A., & Patel, P. (2009). The cost of a cloud: Research problems in data center networks. ACM SIGCOMM Computer Communication Review, 39(1), 68-73.

Koomey, J. G. (2011). Growth in data center electricity use 2005 to 2010. Oakland, CA: Analytics Press.

Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., & Jiang, G. (2009). Power and performance management of virtualized computing environments via lookahead control. Cluster Computing, 12(1), 1-15.

Laverde, C., Venkatesan, S., Torres, A. Y., Yánez-Moretta, P., & Vargas, J. C. J. (2023). Exploration on cloud computing techniques and its energy concern. Mathematical Statistician and Engineering Applications, 72(1), 749-758.

Li, K., Xu, G., Zhao, G., Dong, Y., & Wang, D. (2014). Cloud task scheduling based on load balancing ant colony optimization. International Journal of Grid and Distributed Computing, 7(2), 1-10.

Marinescu, D. C. (2013). Cloud computing: Theory and practice. Morgan Kaufmann.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., & Ghalsasi, A. (2011). Cloud computing-The business perspective. Decision Support Systems, 51(1), 176-189.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of Standards and Technology. Gaithersburg.

Nathuji, R., & Schwan, K. (2007). VirtualPower: Coordinated power management in virtualized enterprise systems. ACM SIGOPS Operating Systems Review, 41(6), 265-278.

Orgerie, A. C., Lefèvre, L., & Gelas, J. P. (2014). Demystifying energy consumption in grids and clouds. In Green Computing: Tools and Techniques for Saving Energy, Money, and Resources (pp. 97–121). CRC Press.

Rimal, B. P., Choi, E., & Lumb, I. (2009). A taxonomy and survey of cloud computing systems. 5th International Joint Conference on INC, IMS and IDC, 44-51.

Shehabi, A., Smith, S. J., Masanet, E., & Koomey, J. (2016). Data center growth in the United States: decoupling the demand for computing from electricity use. Environmental Research Letters, 11(11), 114007.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating system concepts (10th ed.). Wiley.

Smith, J. E., & Nair, R. (2005). Virtual machines: Versatile platforms for systems and processes. Morgan Kaufmann.

Verma, A., Ahuja, P., & Neogi, A. (2008). pMapper: Power and migration cost aware application placement in virtualized systems. IEEE International Conference on Distributed Computing Systems, 62-71.

Xu, J., Zhao, M., Fortes, J., Carpenter, R., & Yousif, M. (2010). Autonomic resource management in virtualized data centers using fuzzy logic-based approaches. Cluster Computing, 11(3), 213–227.

Yánez-Moretta, P., & Rea-Vaca, F. (2022). Sistemas Integrados de Gestión en un contexto de responsabilidad social. Polo del Conocimiento, 7(1), 311-326.

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges. Journal of Internet Services and Applications, 1, 7-18.




DOI: https://doi.org/10.23857/pc.v10i7.9936

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/