Avances e implicaciones de los efectos de vecindad de radiación ionizante (EVIR) en radioterapia: Artículo de revisión
Resumen
La perspectiva del dogma que al exponer a un paciente a irradiación se producen únicamente efectos directos, en radiobiología han cambiado dado que el detrimento biológicos radioinducidos que se producen fuera del campo de irradiación, son los efectos de vecindad que las células circundantes respondes a las señales emitidas por las células blanco del tratamiento. Este efecto de vecindad también denominado espectador, involucra una serie daños al ADN, inestabilidad genómica, senescencia celular, aberraciones cromosómicas, activación del estrés celular. Estas señales se transmiten mediante la comunicación celular de las uniones gap, solutos extracelulares y en estudios recientes se incluye a los exosomas que son un medio por donde se transmite las señales de espectadores a las células vecinas. Por otro lado, los parámetros que depende el efecto de vecindad son el tiempo de exposición a la radiación, la calidad o tipo de radiación, el estado genético del organismo.
Palabras clave
Referencias
Archer, J., & Li, E. (2018). Recent advances in photonic dosimeters for medical radiation therapy. Frontiers of Optoelectronics, 11(1), 23–29. https://doi.org/10.1007/s12200-018-0759-3
Arnés, H. (2016). Tratamiento del cáncer con protones.
Bell, C. L., Shakespeare, T. I., Smith, A. R., & Murray, S. A. (2018). Visualization of Annular Gap Junction Vesicle Processing : The Interplay Between Annular Gap Junctions and Mitochondria. 1–17. https://doi.org/10.3390/ijms20010044
Calcinotto, A., Kohli, J., Zagato, E., Pellegrini, L., Demaria, M., & Alimonti, A. (2019). Cellular senescence: Aging, cancer, and injury. Physiological Reviews, 99(2), 1047–1078. https://doi.org/10.1152/physrev.00020.2018
Chingwaru, W., Glashoff, R. H., Vidmar, J., Kapewangolo, P., & Sampson, S. L. (2016). Asian Paci fi c Journal of Tropical Medicine ( HIV ) interaction studies : A review. Asian Pacific Journal of Tropical Medicine, 9(9), 832–838. https://doi.org/10.1016/j.apjtm.2016.07.002
Daguenet, E., Louati, S., Wozny, A. S., Vial, N., Gras, M., Guy, J. B., Vallard, A., Rodriguez-Lafrasse, C., & Magné, N. (2020). Radiation-induced bystander and abscopal effects: important lessons from preclinical models. British Journal of Cancer, 123(3), 339–348. https://doi.org/10.1038/s41416-020-0942-3
Decrock, E., Hoorelbeke, D., Ramadan, R., Delvaeye, T., De Bock, M., Wang, N., Krysko, D. V., Baatout, S., Bultynck, G., Aerts, A., Vinken, M., & Leybaert, L. (2017). Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? Biochimica et Biophysica Acta - Molecular Cell Research, 1864(6), 1099–1120. https://doi.org/10.1016/j.bbamcr.2017.02.007
Elbakrawy, E., Bains, S. K., Bright, S., Al-Abedi, R., Mayah, A., Goodwin, E., & Kadhim, M. (2020). Radiation-induced senescence bystander effect: The role of exosomes. Biology, 9(8), 1–13. https://doi.org/10.3390/biology9080191
Fu, J., Yuan, D., Xiao, L., Tu, W., Dong, C., Liu, W., & Shao, C. (2016). The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 783(February), 1–8. https://doi.org/10.1016/j.mrfmmm.2015.11.001
Gorgoulis, V., Adams, P. D., Alimonti, A., Bennett, D. C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., Gil, J., Hara, E., Krizhanovsky, V., Jurk, D., Maier, A. B., Narita, M., Niedernhofer, L., Passos, J. F., Robbins, P. D., … Demaria, M. (2019). Cellular Senescence: Defining a Path Forward. Cell, 179(4), 813–827. https://doi.org/10.1016/j.cell.2019.10.005
Heeran, A. B., Berrigan, H. P., & O’Sullivan, J. (2019). The Radiation-Induced Bystander Effect (RIBE) and its Connections with the Hallmarks of Cancer. Radiation Research, 192(6), 668–679. https://doi.org/10.1667/RR15489.1
Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends in Cell Biology, 28(6), 436–453. https://doi.org/10.1016/j.tcb.2018.02.001
Kadhim, M. A., & Hill, M. A. (2015). Non-targeted effects of radiation exposure: Recent advances and implications. Radiation Protection Dosimetry, 166(1–4), 118–124. https://doi.org/10.1093/rpd/ncv167
Kuefner, M. A., Brand, M., Engert, C., Schwab, S. A., & Uder, M. (2015). Radiation Induced DNA Double-Strand Breaks in Radiology. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 187(10), 872–878. https://doi.org/10.1055/s-0035-1553209
Marín, A., Martín, M., Liñán, O., Alvarenga, F., López, M., Fernández, L., Büchser, D., & Cerezo, L. (2015). Bystander effects and radiotherapy. Reports of Practical Oncology and Radiotherapy, 20(1), 12–21. https://doi.org/10.1016/j.rpor.2014.08.004
Moranchel, I. L., Irene, P., & Castell, M. (2019). Estado del arte Protontherapy : state of the art and clinical applications . Revista Oficial De La Sociedad Española De Enfermería Oncologica, 21.
Mortezaee, K., Najafi, M., Farhood, B., Ahmadi, A., Shabeeb, D., & Musa, A. E. (2019). Genomic instability and carcinogenesis of heavy charged particles radiation: Clinical and environmental implications. Medicina (Lithuania), 55(9), 1–13. https://doi.org/10.3390/medicina55090591
Mothersill, C., Rusin, A., Fernandez-Palomo, C., & Seymour, C. (2018). History of bystander effects research 1905-present; what is in a name? International Journal of Radiation Biology, 94(8), 696–707. https://doi.org/10.1080/09553002.2017.1398436
Mohan R, Grosshans D. 2017. Proton therapy - present and future. Adv Drug Deliv Rev. 109:26–44.
Mukherjee, S., & Chakraborty, A. (2018). Radiation-induced bystander phenomenon: insight and implications in radiotherapy. International Journal of Radiation Biology, 95(3), 243–263. https://doi.org/10.1080/09553002.2019.1547440
Najafi, M., Shirazi, A., Motevaseli, E., Geraily, G., Norouzi, F., Heidari, M., & Rezapoor, S. (2017). The melatonin immunomodulatory actions in radiotherapy. Biophysical Reviews, 9(2), 139–148. https://doi.org/10.1007/s12551-017-0256-8
Nikitaki, Z., Mavragani, I. V., Laskaratou, D. A., Gika, V., Moskvin, V. P., Theofilatos, K., Vougas, K., Stewart, R. D., & Georgakilas, A. G. (2016). Systemic mechanisms and effects of ionizing radiation: A new “old” paradigm of how the bystanders and distant can become the players. Seminars in Cancer Biology, 37–38, 77–95. https://doi.org/10.1016/j.semcancer.2016.02.002
Pompos A, Durante M, Choy H. 2016. Heavy ions in cancer therapy. JAMA Oncol. 2:1539–1540.
Puerta-Ortiz, J. A., & Morales-Aramburo, J. (2020). Biological effects of ionising radiation. Revista Colombiana de Cardiologia, 27, 61–71. https://doi.org/10.1016/j.rccar.2020.01.005
Rojo de la Vega, M., Chapman, E., & Zhang, D. D. (2018). NRF2 and the Hallmarks of Cancer. Cancer Cell, 34(1), 21–43. https://doi.org/10.1016/j.ccell.2018.03.022
Sage, E., & Shikazono, N. (2017). Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radical Biology and Medicine, 107, 125–135. https://doi.org/10.1016/j.freeradbiomed.2016.12.008
Sawal, H. A., Asghar, K., Bureik, M., & Jalal, N. (2017). Bystander signaling via oxidative metabolism. OncoTargets and Therapy, 10, 3925–3940. https://doi.org/10.2147/OTT.S136076
Srinivas, U. S., Tan, B. W. Q., Vellayappan, B. A., & Jeyasekharan, A. D. (2019). ROS and the DNA damage response in cancer. Redox Biology, 25, 101084. doi:10.1016/j.redox.2018.101084
Swift, L. H., & Golsteyn, R. M. (2016). The Relationship Between Checkpoint Adaptation and Mitotic Catastrophe in Genomic Changes in Cancer Cells. In Genome Stability: From Virus to Human Application. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803309-8.00022-7
Sylvester, C. B., Abe, J. I., Patel, Z. S., & Grande-Allen, K. J. (2018). Radiation-Induced Cardiovascular Disease: Mechanisms and Importance of Linear Energy Transfer. Frontiers in Cardiovascular Medicine, 5(January), 1–9. https://doi.org/10.3389/fcvm.2018.00005
Toossi, M. T. B., Soleymanifard, S., Khademi, S., Azimian, H., & Mohebi, S. (2016). High dose radiotherapy can be preserved normal tissues from bystander effects of irradiated tumors. Physica Medica, 32, 263. https://doi.org/10.1016/j.ejmp.2016.07.569
Widel, M., Lalik, A., Krzywon, A., Poleszczuk, J., Fujarewicz, K., & Rzeszowska-Wolny, J. (2015). The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 778, 61–70. https://doi.org/10.1016/j.mrfmmm.2015.06.003
Wiktorin, H. G., Aydin, E., Hellstrand, K., & Martner, A. (2020). Nox2-derived reactive oxygen species in cancer. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/7095902
Wingard, J. C., Zhao, H., Javier, F., & Castillo, D. (2015). Cellular and deafness mechanisms underlying connexin mutation- induced hearing loss – a common hereditary deafness. 9(May), 1–13. https://doi.org/10.3389/fncel.2015.00202
Yahyapour, R., Motevaseli, E., Rezaeyan, A., Abdollahi, H., Farhood, B., Cheki, M., Najafi, M., & Villa, V. (2017). Mechanisms of Radiation Bystander and Non-Targeted Effects: Implications to Radiation Carcinogenesis and Radiotherapy. Current Radiopharmaceuticals, 11(1), 34–45. https://doi.org/10.2174/1874471011666171229123130
Yang, S., & Lian, G. (2020). ROS and diseases: role in metabolism and energy supply. Molecular and Cellular Biochemistry, 467(1–2), 1–12. https://doi.org/10.1007/s11010-019-03667-9
DOI: https://doi.org/10.23857/pc.v6i3.2463
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Polo del Conocimiento
Revista Científico-Académica Multidisciplinaria
ISSN: 2550-682X
Casa Editora del Polo
Manta - Ecuador
Dirección: Ciudadela El Palmar, II Etapa, Manta - Manabí - Ecuador.
Código Postal: 130801
Teléfonos: 056051775/0991871420
Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com
URL: https://www.polodelconocimiento.com/