Estudio de la transferencia de calor en energías renovables: Optimización de paneles solares térmicos y sistemas geotérmicos

Jorge Milton Lara Sinaluisa, Juan Martínez Nogales, Jessica Fernanda Moreno Ayala, Nelly Patricia Perugachi Cahueñas

Resumen


La presente investigación analiza los procesos de transferencia de calor en tecnologías de energía renovable térmica, focalizándose en la eficiencia y optimización de paneles solares térmicos y sistemas geotérmicos. A través de una revisión sistemática de la literatura científica entre 2021 y 2025, se identificaron mecanismos clave de conducción, convección y radiación, así como sus interacciones en entornos operativos reales. Se destacan avances en el uso de nanofluidos, materiales de cambio de fase y técnicas de simulación térmica que mejoran la eficiencia energética. Asimismo, se examinan configuraciones estructurales, propiedades del terreno e innovaciones en acoplamientos híbridos solar-geotérmicos. Los resultados revelan que los sistemas integrados maximizan el aprovechamiento térmico, reducen pérdidas energéticas y mejoran la sostenibilidad operativa. Se concluye que el diseño optimizado, sustentado en modelos computacionales avanzados y análisis exergéticos, permite desarrollar soluciones energéticas resilientes, sostenibles y adaptables a diversos contextos climáticos y geográficos.


Palabras clave


transferencia de calor; paneles solares térmicos; sistemas geotérmicos; eficiencia térmica; energías renovables; integración híbrida.

Texto completo:

PDF HTML

Referencias


Akdas, S. B., & Onur, M. (2022). Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet. Renewable Energy, 181, 567-580. https://www.sciencedirect.com/science/article/pii/S0960148121013495

Asadi, R., Assareh, E., Moltames, R., Olazar, M., Nedaei, M., & Parvaz, F. (2022). Optimisation of combined cooling, heating and power (CCHP) systems incorporating the solar and geothermal energy: a review study. International Journal of Ambient Energy, 43(1), 42-60. https://www.tandfonline.com/doi/abs/10.1080/01430750.2019.1630299

Assad, M., & Rosen, M. A. (Eds.). (2021). Design and performance optimization of renewable energy systems. Academic press. https://books.google.es/books?hl=es&lr=&id=ODoEEAAAQBAJ&oi=fnd&pg=PP1&dq=Study+of+Heat+Transfer+in+Renewable+Energy:+Optimization+of+Solar+Thermal+Panels+and+Geothermal+Systems&ots=hSLzk8_VOL&sig=DkR_LBLR9OQWtAbbHpGFoUajEh0

Assareh, E., Assareh, M., Alirahmi, S. M., Jalilinasrabady, S., Dejdar, A., & Izadi, M. (2021). An extensive thermo-economic evaluation and optimization of an integrated system empowered by solar-wind-ocean energy converter for electricity generation–Case study: Bandar Abas, Iran. Thermal Science and Engineering Progress, 25, 100965. https://www.sciencedirect.com/science/article/pii/S245190492100127X

Assareh, E., Hoseinzadeh, S., Agarwal, N., Delpisheh, M., Dezhdar, A., Feyzi, M., ... & Lee, M. (2023). A transient simulation for a novel solar-geothermal cogeneration system with a selection of heat transfer fluids using thermodynamics analysis and ANN intelligent (AI) modeling. Applied Thermal Engineering, 231, 120698. https://www.sciencedirect.com/science/article/pii/S1359431123007275

Behera, U. S., Sangwai, J. S., & Byun, H. S. (2025). A comprehensive review on the recent advances in applications of nanofluids for effective utilization of renewable energy. Renewable and Sustainable Energy Reviews, 207, 114901. https://www.sciencedirect.com/science/article/pii/S1364032124006270

Benzaama, M. H., Menhoudj, S., Lekhal, M. C., Mokhtari, A., & Attia, S. (2021). Multi-objective optimisation of a seasonal solar thermal energy storage system combined with an earth–Air heat exchanger for net zero energy building. Solar energy, 220, 901-913. https://www.sciencedirect.com/science/article/pii/S0038092X21002644

Boukelia, T. E., Arslan, O. Ğ. U. Z., & Bouraoui, A. (2021). Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant. Energy, 232, 121109. https://www.sciencedirect.com/science/article/pii/S0360544221013578

Dokmak, H., Faraj, K., Faraj, J., Castelain, C., & Khaled, M. (2024). Geothermal systems classification, coupling, and hybridization: A recent comprehensive review. Energy and Built Environment. https://www.sciencedirect.com/science/article/pii/S2666123324000345

Eisapour, A. H., Rad, F. M., & Fung, A. S. (2024). Techno-economic and environmental study of a hybrid solar ground source heat pumps for a heating-dominated community in a cold climate; a case study in Toronto. Renewable Energy, 231, 120874. https://www.sciencedirect.com/science/article/pii/S096014812400942X

Farajollahi, A., Baharvand, M., & Takleh, H. R. (2024). Modeling and optimization of hybrid geothermal-solar energy plant using coupled artificial neural network and genetic algorithm. Process Safety and Environmental Protection, 186, 348-360. https://www.sciencedirect.com/science/article/pii/S0957582024003537

Forghani, A. H., Solghar, A. A., & Hajabdollahi, H. (2024). Optimal design of a multi-generation system based on solar and geothermal energy integrated with multi-effect distillatory. Applied Thermal Engineering, 236, 121381. https://www.sciencedirect.com/science/article/pii/S1359431123014102

Ghiasi, M., Wang, Z., Mehrandezh, M., & Paranjape, R. (2025). Enhancing efficiency through integration of geothermal and photovoltaic in heating systems of a greenhouse for sustainable agriculture. Sustainable Cities and Society, 118, 106040. https://www.sciencedirect.com/science/article/pii/S221067072400862X

Gondal, I. A. (2021). Prospects of Shallow geothermal systems in HVAC for NZEB. Energy and Built Environment, 2(4), 425-435. https://www.sciencedirect.com/science/article/pii/S2666123320300957

Hai, T., Ali, M. A., Chaturvedi, R., Almojil, S. F., Almohana, A. I., Alali, A. F., ... & Shamseldin, M. A. (2023). A low-temperature driven organic Rankine cycle for waste heat recovery from a geothermal driven Kalina cycle: 4E analysis and optimization based on artificial intelligence. Sustainable Energy Technologies and Assessments, 55, 102895. https://www.sciencedirect.com/science/article/pii/S2213138822009432

Hemmatabady, H., Welsch, B., Formhals, J., & Sass, I. (2022). AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling. Applied Energy, 311, 118652. https://www.sciencedirect.com/science/article/pii/S0306261922001209

Hou, G., Xu, L., Liu, Z., Chen, D., Ru, H., & Taherian, H. (2023). Solar-assisted geothermal heat pump systems: current practice and future development. In Renewable energy production and distribution (pp. 217-246). Academic Press. https://www.sciencedirect.com/science/article/pii/B9780443184390000136

Hu, S., Yang, Z., Li, J., & Duan, Y. (2022). Optimal solar thermal retrofit for geothermal power systems considering the lifetime brine degradation. Renewable Energy, 186, 628-645. https://www.sciencedirect.com/science/article/pii/S0960148122000295

Jafari, R. (2021). Optimization and energy analysis of a novel geothermal heat exchanger for photovoltaic panel cooling. Solar Energy, 226, 122-133. https://www.sciencedirect.com/science/article/pii/S0038092X21007039

Kamazani, M. A., & Aghanajafi, C. (2022). Multi-objective optimization and exergoeconomic evaluation of a hybrid geothermal-PVT system integrated with PCM. Energy, 240, 122806. https://www.sciencedirect.com/science/article/pii/S0360544221030553

Kim, Y. J., Entchev, E., Na, S. I., Kang, E. C., Baik, Y. J., & Lee, E. J. (2023). Investigation of system optimization and control logic on a solar geothermal hybrid heat pump system based on integral effect test data. Energy, 284, 129308. https://www.sciencedirect.com/science/article/pii/S0360544223027020

Kumar, A., Singh, V. P., Meena, C. S., & Dutt, N. (Eds.). (2023). Thermal energy systems: Design, computational techniques, and applications. CRC Press. https://books.google.es/books?hl=es&lr=&id=Ydu-EAAAQBAJ&oi=fnd&pg=PR9&dq=Study+of+Heat+Transfer+in+Renewable+Energy:+Optimization+of+Solar+Thermal+Panels+and+Geothermal+Systems&ots=CBq4NMJthp&sig=KzDOzCcDMytsIanR3OL0vAERupU

Kundu, A. (2025). Application of Geothermal Energy‐Based Earth‐Air Heat Exchanger in Sustainable Buildings. Heat Transfer Enhancement Techniques: Thermal Performance, Optimization and Applications, 221-232. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781394270996.ch9

Lapertot, A., Cuny, M., Kadoch, B., & Le Métayer, O. (2021). Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs. Energy and Buildings, 235, 110702. https://www.sciencedirect.com/science/article/pii/S0378778820334885

López-Pascual, D., Valiente-Blanco, I., Fernandez-Munoz, M., & Diez-Jimenez, E. (2023). Theoretical modelling and optimization of a geothermal cooling system for solar photovoltaics. Renewable Energy, 206, 357-366. https://www.sciencedirect.com/science/article/pii/S0960148123001064

Mohammadi, M., Mahmoudan, A., Nojedehi, P., Hoseinzadeh, S., Fathali, M., & Garcia, D. A. (2023). Thermo-economic assessment and optimization of a multigeneration system powered by geothermal and solar energy. Applied Thermal Engineering, 230, 120656. https://www.sciencedirect.com/science/article/pii/S1359431123006853

Noorollahi, Y., Pakzadmanesh, M., Kashani, A., Pouyaei, A., Yousefi, F., Roumi, S., & Jalilinasrabady, S. (2023). Reliable renewable power production by modeling of geothermal assisted solar chimney power plant. Geothermics, 111, 102701. https://www.sciencedirect.com/science/article/pii/S037565052300055X

Omeiza, L. A., Abid, M., Subramanian, Y., Dhanasekaran, A., Bakar, S. A., & Azad, A. K. (2023). Challenges, limitations, and applications of nanofluids in solar thermal collectors—a comprehensive review. Environmental Science and Pollution Research, 1-29. https://link.springer.com/article/10.1007/s11356-023-30656-9

Parvaz, M., Mohammadi, H., & Assareh, E. (2023). Effect of different operation strategies on transient solar thermal power plant simulation models with molten salt as heat transfer fluid–Considering 5 cities under different climate zones–Dubai and Iran. Thermal Science and Engineering Progress, 38, 101654. https://www.sciencedirect.com/science/article/pii/S2451904923000070

Patel, A. (2023). Enhancing heat transfer efficiency in solar thermal systems using advanced heat exchangers. Multidisciplinary International Journal of Research and Development (MIJRD), 2(06), 31-51. https://www.mijrd.com/papers/v2/i6/MIJRDV2I60003.pdf

Pelella, F., Zsembinszki, G., Viscito, L., Mauro, A. W., & Cabeza, L. F. (2023). Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage. Applied Energy, 331, 120398. https://www.sciencedirect.com/science/article/pii/S0306261922016555

Pikra, G., Darmanto, P. S., & Astina, I. M. (2024). A review of solar chimney-earth air heat exchanger (SCEAHE) system integration for thermal comfort building. Journal of Building Engineering, 111484. https://www.sciencedirect.com/science/article/pii/S2352710224030523

Pilou, M., Kosmadakis, G., Meramveliotakis, G., & Krikas, A. (2022). Towards a 100% renewable energy share for heating and cooling in office buildings with solar and geothermal energy. Solar Energy Advances, 2, 100020. https://www.sciencedirect.com/science/article/pii/S2667113122000080

Ragab, K. M., & Orhan, M. F. (2024). Evaluating conventional and renewable energy systems for green buildings: A case study on energy efficiency and cost optimization. Case Studies in Thermal Engineering, 63, 105233. https://www.sciencedirect.com/science/article/pii/S2214157X24012644

Rahman, A., Abas, N., Dilshad, S., & Saleem, M. S. (2021). A case study of thermal analysis of a solar assisted absorption air-conditioning system using R-410A for domestic applications. Case Studies in Thermal Engineering, 26, 101008. https://www.sciencedirect.com/science/article/pii/S2214157X21001714

Rana, M., Nuhash, M. M., & Bhuiyan, A. A. (2024). A CFD modelling for optimizing geometry parameters for improved performance using clean energy geothermal ground-to-air tunnel heat exchangers. Case Studies in Thermal Engineering, 53, 103867. https://www.sciencedirect.com/science/article/pii/S2214157X23011735

Ren, F., Wei, Z., & Zhai, X. (2022). A review on the integration and optimization of distributed energy systems. Renewable and Sustainable Energy Reviews, 162, 112440. https://www.sciencedirect.com/science/article/pii/S136403212200346X

Shoaei, M., Hajinezhad, A., & Moosavian, S. F. (2023). Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources. Energy, 280, 128162. https://www.sciencedirect.com/science/article/pii/S0360544223015566

Singh, A. K., & Kumar, R. (2025). Enhancing renewable energy systems using loop heat pipes: A case research on solar thermal applications. Applied Thermal Engineering, 126866. https://www.sciencedirect.com/science/article/pii/S1359431125014589

Smaisim, G. F., Abed, A. M., & Shamel, A. (2023). Investigation and optimization of solar collector and geothermal pump hybrid system for cogeneration of heat and power with exergy-economic approach. Clean Energy, 7(3), 571-581. https://academic.oup.com/ce/article-abstract/7/3/571/7175983

Tafavogh, M., & Zahedi, A. (2021). Design and production of a novel encapsulated nano phase change materials to improve thermal efficiency of a quintuple renewable geothermal/hydro/biomass/solar/wind hybrid system. Renewable Energy, 169, 358-378. https://www.sciencedirect.com/science/article/pii/S0960148120320589

Tao, H., Zhou, J., & Musharavati, F. (2023). Techno-economic examination and optimization of a combined solar power and heating plant to achieve a clean energy conversion plant. Process Safety and Environmental Protection, 174, 223-234. https://www.sciencedirect.com/science/article/pii/S0957582023002860

Verma, V., Thangavel, S., Dutt, N., Kumar, A., & Weerasinghe, R. (Eds.). (2024). Highly Efficient Thermal Renewable Energy Systems: Design, Optimization and Applications. CRC Press. https://books.google.es/books?hl=es&lr=&id=TqUIEQAAQBAJ&oi=fnd&pg=PP1&dq=Study+of+Heat+Transfer+in+Renewable+Energy:+Optimization+of+Solar+Thermal+Panels+and+Geothermal+Systems&ots=9lYFiuExbf&sig=WLXO4ndqythwBCEu0fLQ56wiiIs

Wang, F., & You, T. (2023). Synergetic performance improvement of a novel building integrated photovoltaic/thermal-energy pile system for co-utilization of solar and shallow-geothermal energy. Energy Conversion and Management, 288, 117116. https://www.sciencedirect.com/science/article/pii/S0196890423004624

Yilmaz, C., & Sen, O. (2022). Thermoeconomic analysis and artificial neural network based genetic algorithm optimization of geothermal and solar energy assisted hydrogen and power generation. International Journal of Hydrogen Energy, 47(37), 16424-16439. https://www.sciencedirect.com/science/article/pii/S0360319922012009

Yilmaz, C., & Koyuncu, I. (2021). Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant. Renewable Energy, 163, 1166-1181. https://www.sciencedirect.com/science/article/pii/S0960148120314324




DOI: https://doi.org/10.23857/pc.v10i6.9678

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/