Pensamiento Computacional 5.0: La Nueva Brújula para Transformar la Enseñanza Universitaria en la Era de la Inteligencia Artificial

Josselyn Maoly Cedillo Arce, José Luis Lucero Sumba, Wilmer Aníbal Velasco Orellana, Marjorie Irene Saltos Arce

Resumen


El rápido auge de la inteligencia artificial (IA) en la educación superior hace urgente revisar las competencias académicas y profesionales. En este contexto, el objetivo de esta investigación fue definir y conceptualizar el Pensamiento Computacional 5.0 (PC 5.0) como la evolución natural del PC para articular un marco que apoye la transformación curricular a nivel universitario. Se empleó un proceso de revisión conceptual sistemática; se revisaron veinte artículos seminales publicados o proyectados para 2025. Entre las publicaciones se encontraban aquellas sobre IA, alfabetización, ética y nuevos métodos pedagógicos en educación superior.

Aunque los resultados parecían indicar el comienzo de una nueva era donde el Pensamiento Computacional ya no significaba solo codificar, sino también pensar en cuestiones sobre la ética del algoritmo, la explicación y el empoderamiento del usuario. Más específicamente, se definieron tres pilares clave del PC 5.0; 1) Alfabetización Ética y Crítica en IA, indispensable para la validación de la verdad; 2) Uso de IA Explicable (XAI) y Análisis de Aprendizaje Multimodal (MMLA) para la comprensión del sistema; 3) Promoción del pensamiento lateral asistido por IA.

Finalmente, se concluyó que el PC 5.0 es la estrella polar curricular insustituible en el viaje infalible de los estudiantes hacia la construcción de resiliencia profesional y la toma de decisiones éticamente informadas por inteligencia artificial (IA) a nivel universitario.


Palabras clave


Pensamiento Computacional 5.0; Inteligencia Artificial en la Educación; Innovación en la Educación Superior; Pedagogía Digital; Transformación Docente Universitaria.

Texto completo:

PDF HTML

Referencias


Albasry, H., Carmona-Cejudo, E., Rauf, A., & Chen, D. (2025). A systematically derived AI-based framework for student-centered learning in higher education. Social Sciences & Humanities Open, 12, 102085. doi:https://doi.org/10.1016/j.ssaho.2025.102085

Arseven, T., & Bal, M. (2025). Critical literacy in artificial intelligence assisted writing instruction: A systematic review. Thinking Skills and Creativity, 57, 101850. doi:https://doi.org/10.1016/j.tsc.2025.101850

Boulhrir, T., & Hamash, M. (2025). Unpacking artificial intelligence in elementary education: A comprehensive thematic analysis systematic review. Computers and Education: Artificial Intelligence, 9, 100442. doi:https://doi.org/10.1016/j.caeai.2025.100442

Cheah, Y. H., Lu, J., & Kim, J. (2025). Integrating generative artificial intelligence in K-12 education: Examining teachers’ preparedness, practices, and barriers. Computers and Education: Artificial Intelligence, 8, 100363. doi:https://doi.org/10.1016/j.caeai.2025.100363

Degen, P.-B. (2025). Revisiting generalizability theory in the age of artificial intelligence: Implications for empirical educational research. Computers and Education Open, 9, 100278. doi:https://doi.org/10.1016/j.caeo.2025.100278

Deriba, F. G., & Sanusi, I. T. (2025). Artificial intelligence in Ethiopian school curriculum: Educators' practices, challenges, and recommendations. Computers and Education Open, 8, 100251. doi:https://doi.org/10.1016/j.caeo.2025.100251

Golrang, A., & Sharma, K. (2025). The role of AI in shaping educational experiences in computer science: A systematic review. Computers in Human Behavior: Artificial Humans, 6, 100199. doi:https://doi.org/10.1016/j.chbah.2025.100199

Hamidi, H. (2025). A model for generative artificial intelligence in customer decision-making process using social interaction. Telematics and Informatics Reports, 19, 100237. doi:https://doi.org/10.1016/j.teler.2025.100237

Kong, S. C., & Hu, W. (2025). A study of developing administrative Staff's conceptual understanding of generative artificial intelligence through professional Development: Evaluation of a course using tests, surveys and thematic analysis of reflective writings. Computers and Education: Artificial Intelligence, 9, 100444. doi:https://doi.org/10.1016/j.caeai.2025.100444

Kong, S. C., & Zhu, J. (2025). Developing and validating an artificial intelligence ethical awareness scale for secondary and university students: Cultivating ethical awareness through problem-solving with artificial intelligence tools. Computers and Education: Artificial Intelligence, 9, 100447. doi:https://doi.org/10.1016/j.caeai.2025.100447

Kong, S. C., Zhu, J., & Yang, Y. N. (2025). Developing and validating a scale of empowerment in using artificial intelligence for problem-solving for senior secondary and university students. Computers and Education: Artificial Intelligence, 8, 100359. doi:https://doi.org/10.1016/j.caeai.2024.100359

Korte, S.-M., Körkkö, M., & Føreland, L. R. (2025). Developing computational thinking skills in higher education through peer reflection on robotics and programming exercises with Bee-Bots, Lego Mindstorms EV3 and Minecraft Education. Learning, Culture and Social Interaction, 55, 100947. doi:https://doi.org/10.1016/j.lcsi.2025.100947

Matos, T., Santos, W., Zdravevski, E., Coelho, P. J., Pires, I. M., & Madeira, F. (2025). A systematic review of artificial intelligence applications in education: Emerging trends and challenges. Decision Analytics Journal, 15, 100571. doi:https://doi.org/10.1016/j.dajour.2025.100571

Maulana, A., Fenitra, R. M., Sutrisno, S., & Kurniawan. (2025). Artificial intelligence, job seeker, and career trajectory: How AI-based learning experiences affect commitment of fresh graduates to be an accountant? Computers and Education: Artificial Intelligence, 8, 100413. doi:https://doi.org/10.1016/j.caeai.2025.100413

Mohammadi, M., Tajik, E., Martinez-Maldonado, R., Sadiq, S., Tomaszewski, W., & Khosravi, H. (2025). Artificial intelligence in multimodal learning analytics: A systematic literature review. Computers and Education: Artificial Intelligence, 8, 100426. doi:https://doi.org/10.1016/j.caeai.2025.100426

Montesi, M., Bornstein, B. Á., Puig, N. B., Ochando, M. B., & Díez, A. S. (2025). AILIS 1.0: A new framework to measure AI literacy in library and information science (LIS). The Journal of Academic Librarianship, 51(5), 103118. doi:https://doi.org/10.1016/j.acalib.2025.103118

Rahimi, A. R. (2025). Developing and validating the scale of language teachers’ design thinking competency in artificial intelligence language teaching (LTDTAILT). Computers and Education: Artificial Intelligence, 8, 100420. doi:https://doi.org/10.1016/j.caeai.2025.100420

Rahioui, F., Jouti, M. A. T., & El Ghzaoui, M. (2025). Exploring the effect of ChatGPT-3 on biology students' lateral thinking skills: a mixed-methods study and impacts for ai-enhanced education. Telematics and Informatics Reports, 19, 100249. doi:https://doi.org/10.1016/j.teler.2025.100249

Ronksley-Pavia, M., Nguyen, L., Wheeley, E., Rose, J., Neumann, M. M., Bigum, C., & Neumann, D. L. (2025). A scoping literature review of generative artificial intelligence for supporting neurodivergent school students. Computers and Education: Artificial Intelligence, 9, 100437. doi:https://doi.org/10.1016/j.caeai.2025.100437

Salido, A., Syarif, I., Sitepu, M. S., Suparjan, Wana, P. R., Taufika, R., & Melisa, R. (2025). Integrating critical thinking and artificial intelligence in higher education: A bibliometric and systematic review of skills and strategies. Social Sciences & Humanities Open, 12, 101924. doi:https://doi.org/10.1016/j.ssaho.2025.101924

Tan, L. Y., Hu, S., Yeo, D. J., & Cheong, K. H. (2025). Artificial intelligence-enabled adaptive learning platforms: A review. Computers and Education: Artificial Intelligence, 9, 100429. doi:https://doi.org/10.1016/j.caeai.2025.100429

Tan, X., Cheng, G., & Ling, M. H. (2025). Artificial intelligence in teaching and teacher professional development: A systematic review. Computers and Education: Artificial Intelligence, 8, 100355. doi:https://doi.org/10.1016/j.caeai.2024.100355

Tsai, C.-W., Lee, L., Yu-Ching Lin, M., Cheng, Y.-P., Lin, C.-H., & Tsai, M.-C. (2025). Effects of integrating self-regulation scaffolding supported by chatbot and online collaborative reflection on students’ learning in an artificial intelligence course. Computers & Education, 232, 105305. doi:https://doi.org/10.1016/j.compedu.2025.105305

Vega-Rebolledo, I., Sánchez-García, A. J., Muñoz León, J. J., Ocharán-Hernández, J. O., & Cortés-Verdín, K. (2025). Applying survival analysis and Explainable Artificial Intelligence to understand academic success in software engineering students. Array, 28, 100540. doi:https://doi.org/10.1016/j.array.2025.100540

Wang, Y., Derakhshan, A., & Ghiasvand, F. (2025). EFL teachers’ generative artificial intelligence (GenAI) literacy: A scale development and validation study. System, 133, 103791. doi:https://doi.org/10.1016/j.system.2025.103791




DOI: https://doi.org/10.23857/pc.v10i10.10614

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia
';





Polo del Conocimiento              

Revista Científico-Académica Multidisciplinaria

ISSN: 2550-682X

Casa Editora del Polo                                                 

Manta - Ecuador       

Dirección: Ciudadela El Palmar, II Etapa,  Manta - Manabí - Ecuador.

Código Postal: 130801

Teléfonos: 056051775/0991871420

Email: polodelconocimientorevista@gmail.com / director@polodelconocimiento.com

URL: https://www.polodelconocimiento.com/